Исследования микромира и микрокосмоса

Пределы пропорцианальности и упругости.

Мы уже говорили,что закон Гука выполняется при небольших деформациях, а следовательно, при напряжениях, не превосходящих некоторого предела. Максимальное напряжение sп (см. Рис. 7), при котором ещё выполняется закон Гука, называют пределом пропорцианальности.

Если увеличивать нагрузку, то деформация становится нелинейной, напряжение перестанет быть прямо пропорциальным относительному удлинению. Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются. Максимальное напряжение, при котором ещё не возникают заметные остаточные деформации(относительная остаточная деформация не превышает 0,1%), называют пределом упругости sуп. Предел упругости превышает предел пропорциональности лишь на сотые доли процента.

Рис. 7

d

E

dпч K

C D

dуп

B

dп A

O Q P e

Предел прочности

. Если внешняя нагрузка такова, что напряжение в материале превышает предел упругости, то после снятия нагрузки образец, хоят немного и укорачивается, но не принемает прежних размеров, а остаётся деформированным.

По мере увеличения нагрузки деформация нарастает всё быстрее и быстрее. При некотором значении напряжения , соответствующем на диаграмме точке C, удлинение нарастает практически без увеличения нагрузки. Это явление называют текучестью материала (участок CD). Кривая на диграмме идёт пир этом почти горизонтально. Далее с увеличением деформации кривая напряжений начинает немного возрастать и достигает максимума в точке E. Затем напряжение резко спадёт и образец нарушается (точка K). Таким образом, разрыв происходит после того, как напряжение достигает максимального значения sпч, называемого пределомпрочности (обрзец растягивается без увеличения внешней нагрузки вплоть до разрушения). Эта величина зависит от материала образца и качества его обработки.

Сооружения или конструкции надёжны, если возникающие в них при эксплуатации напряжения в несколько раз меньше предела прочности.

Исследования растяжения (сжатия) твёрдого тела позволяют установить, от чего зависит коэффицент жесткости в законе Гука. Диаграмма растяжения, полученная экспериментально, даёт достаточно полную информацию о механических свойствах материала и позволяет оценить его прочность.

Пластичность и Хрупкость.

Упругость.

Тело из любого материала при малых деформациях ведёт себя, как упругое. Его размеры и форма восстанавливаются при снятии нагрузки. В то же время все тела в той или иной мере могут испытывать пластичиские деформации.

Механические свойства материалов разнообразны. Такие материалы, как резина или сталь обнаруживают упругие свойства при сравинительно больших напряжениях и деформациях. Для стали, например, закон Гука выполняется вплоть до e = 1%, а для резины - до десятков процентов. Поэтому такие материалы называют упругими.

Перейти на страницу: 3 4 5 6 7 8 9 10

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.