Исследования микромира и микрокосмоса

Полупроводниковые кристаллыпозво-ляют создавать сложные полупроводник-овые приборы, в том числе так называемые интегральные схемы. Сейчас достигнута такая степень интеграции, что миллионы отдельных элементов умещаются на площади размером в 1 см2! Такое устройство как бы является единым кристаллом, и новую область техники не зря называют твердотельной электроникой.

Огромное значение для современной техники имеют магнитные материалы. Атомы (или часть атомов), из которых состоит магнитное тело, могут обладать магнитным моментом. Если взаимодействие между магнитными моментами велико, то они выстраиваютсяо пределённм образом и твёрдое тело перезодит в ферромагнитное или антифорромагнитное состояние.

Механические свойства твёрдых тел.

Диаграмма растяжения

. Величина, характеризующая сотояние деформарованного тела, называется маханическим напряжением. В любом сечении деформированного тела действуют силы упругости,препятствующие разрыву этого тела на части. Напряжением или, точнее, механическим напряжением называют отношение модуля силы упругости

F

к площади поперечного сечения

S

тела.

s =F/S

В СИ за единицу напряжения принимается 1 Па= 1 Н/м2, как и для давления.

В случае сжатия стержня напряжение аналогично давлению в газах и жидкостях. Для исследования деформации растяжения стержень при помощи специальных устройствподвергают растяжению, а затем измеряют удлинение образца и возникающее в нём напряжение. По результатам опытов вычерчивают график зависимости напряжения s от относительного удлинения e, получивший название диаграммы растяжения.

Закон Гука

. Опыт показывает: при малых деформациях напряжение

s

прямо пропорцианальноотносительно относительному удлинению

e

(участок OA диаграммы). Эта зависимость, называемая законом Гука,

записывается так:

s = E |e| (1)

Относительное удлинение e в формуле (1) взято по модулю, так как закон Гука справедлив как для деформации растяжения, так и для деформации сжатия, когда e < 0.

Коэффицент пропорцианальности E, входящий в закон Гука, называется модулем упругости или модулем Юнга. Модуль Юнга пределяют по формуле (1), измеряя напряжение s и относительное удлинение e при малых деформациях.

Для большинства широко распространённых мытериалов модуль Юнга определён экспериментально. Так, для хромоникелевой стали E=2,1×1011 Па, а для аллюминия E=7×1010 Па. Чем больше модуль Юнга, тем меньше деформирется стержень при прочих равных условиях (одинаковых F,S,l0). Модуль Юнга характеризует сопротивляемость материала упрогой деформации растяжения или сжатия.

Закон Гука, записанный в формуле (1), легко привести к виду, известному из курса физики IX класса.

Действительно, подставив в формулу (1) s = F/S и e = |Dl|/l0 , получим:

F/S=E × |Dl|/l0

Отсюда

F = SE/l0 × |Dl|. (2)

Обозначим

SE/l0=k, тогда

F=k|Dl |. (3)

Таким образом, жесткость k стержня прямо пропорцианальна произведению модуля Юнга на площадь поперечного сечения стержня и обратно пропорцианальна его длине.

Перейти на страницу: 2 3 4 5 6 7 8 9 10

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.

Лучшая статья

Единая квантовая теория

Матричное моделирование элементарных частиц представляет собой единую квантовую теорию, которая объединяет все виды частиц и физические взаимодействия (электромагнитное, гравитационное) в общую схему с конечным построением. Матричное моделирование альтернативно модели Гелл-Манна и всех смежных ей теорий, но имеет ряд существенных преимуществ (перечислены ниже).