Материальные уравнения электромагнитного поля в среде с дисперсией.

Дисперсионные эффекты часто проявляются при распространении электромагнитных волн. Покажем, как видоизменяются исходные уравнения при учете этих свойств. Система уравнений Максвелла сохраняет свой вид. Свойства среды должны быть учтены в материальных уравнениях:

.

Для статических и медленно изменяющихся полей можно написать

,

где — константы, т. е. значения и в некоторой точке среды и в некоторый момент времени определяются значениями и в той же точке и в тот же момент времени.

При быстром изменении поля вследствие инерции внутренних движений и наличия пространственной микроструктуры среды наблюдается зависимость поляризации от поля, действующего в других точках и в другие моменты времени. При этом нужно иметь в виду, что в силу условия причинности поляризация и, следовательно, индукция зависят от полей, действовавших только в предыдущие моменты времени.

Сказанное можно записать математически, представляя материальные уравнения в общей интегральной форме:

, (1.1)

, (1.2)

. (1.3)

По дважды встречающимся индексам здесь и везде в дальнейшем предполагается суммирование.

Выражения (1.1) — (1.3) представляют собой наиболее общую функциональную форму записи материальных уравнений для линейной среды. В этой записи учтена возможность проявления нелокальности, запаздывания и анизотропных свойств среды.

В частном случае, если среда однородна в пространстве и не изменяет со временем своих свойств, материальные характеристики , , должны зависеть лишь от разностей координат и времени . Тогда

, (1.4)

, (1.5)

. (1.6)

Связь между электрическим смещением и магнитной индукцией, полями и поляризациями среды определяется соотношениями

. (1.7)

Поэтому материальные уравнения можно записать также в виде

, (1.8)

где — тензор восприимчивости среды. Аналогичное выражение можно записать для .

Для проведения дальнейшего анализа удобно разложить по плоским волнам:

.

После обычного перехода в фурье-представление в выражениях для и получаем простую зависимость

, (1.9)

, (1.9)

где

. (1.10)

Видно, что компоненты тензора диэлектрической проницаемости зависят в общем случае от частоты и от волнового вектора волны.

Аналогичный вывод можно сделать для магнитной проницаемости и проводимости .

Таким образом, дисперсия при распространении электромагнитных волн может проявляться двояким образом — как частотная (за счет зависимости , , от частоты) и как пространственная (за счет зависимости этих же параметров от волнового вектора ). Частотная дисперсия существенна, если частота электромагнитных волн близка к собственным частотам колебаний в среде. Пространственная же дисперсия становится заметной, когда длина волны сравнима с некоторыми характерными размерами.

Перейти на страницу: 1 2 3

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.

Лучшая статья

Единая квантовая теория

Матричное моделирование элементарных частиц представляет собой единую квантовую теорию, которая объединяет все виды частиц и физические взаимодействия (электромагнитное, гравитационное) в общую схему с конечным построением. Матричное моделирование альтернативно модели Гелл-Манна и всех смежных ей теорий, но имеет ряд существенных преимуществ (перечислены ниже).