Узкополосный импульсный лазер  на красителях с электродинамическими приводами поворота дисперсионных элементов

Исследование изотопических сдвигов оптических линий атомов с короткоживущими ядрами на лазерно-ядерном комплексе, созданном сотрудниками Ленинградского института ядерной физики и Института спектроскопии АН СССР, потребовало разработки узкополосного (dn~1 пм) импульсного лазера на красителях, который обеспечивал бы с высокой степенью воспроизводимости сравнительно быструю и плавную перестройку длину волны излучения и легко сопрягался с ЭВМ. Методы получения узкополосного плавно перестраиваемого излучения достаточно хорошо разработаны — обычно это механическая перестройка (поворот) дифракционной решетки лазера, производимая синхронно и одновременно с перестройкой вставляемых внутрь резонатора эталона Фабри — Перо или фильтра Лио, либо перестройка оптической длины такого резонатора за счет изменения давления газа. Последний способ обеспечивает синхронность перестройки всех дисперсионных элементов резонатора лазера в сравнительно большом диапазоне длин волн (несколько нанометров) и высокую (0,2 %) линейность сканирования, но неприемлем из-за низкой скорости сканирования.

При перестройке внутрирезонаторного эталона Фабри-Перо изменением его зазора связь приводов решетки эталона вследствие линейности характеристик преобразования обоих дисперсионных элементов достигается установкой одного коэффициента пропорциональности, обеспечивающего одинаковые приращения по длине волны в зависимости от управляющего сигнала. Однако создание привода с линейной и стабильной характеристикой преобразования для такого эталона является весьма сложной задачей. В большинстве случаев для этой цели используются пьезокерамические материалы, которым присущи такие свойства, как гистерезис и достаточно большая температурная нестабильность. Эти недостатки можно компенсировать только с помощью сложных технических решений, где эффект достигается введением отрицательной обратной связи по перемещению, а измерение перемещения осуществляется датчиком емкостного типа.

Перечисленные трудности привели нас к выбору другого способа перестройки эталона (с помощью его поворота), который мог быть реализован с использованием хорошо зарекомендовавшего себя электродинамического привода (ЭДП), управляющего поворотом дифракционной решетки лазера. Единственный недостаток такого способа — нелинейность зависимости перестройки длины волны от угла поворота — был устранен введением небольшого дополнительного функционального блока, осуществляющего нелинейную связь до управляющим напряжениям приводов решетки и эталона (рис. 3.1

).

Зависимости длины волны l от углов поворота j и q дифракционной решетки 1 и эталона Фабри — Перо 2 соответственно даются известными формулами: и , где d — постоянная решетки, t — зазор эталона и . Исключив длину волны из этих зависимостей, находим связь углов и : , или . Эта нелинейная зависимость может быть аппроксимирована полиномом второй степени

(3.1)

где Up и Uэ — напряжения управления ЭДП решетки (ЭДПР) и эталона (ЭДПЭ) соответственно; — коэффициенты, устанавливаемые при настройке ЭДП. Для согласования размеров пучка на дифракционной решетке и эталоне служил призменный телескоп. 6.

Для обеспечения плавной линейной перестройки длины волны лазера на вход регулирующего устройства (РУ) 3 ЭДПР подается вырабатываемое программным генератором (ПГ) 4 линейное пилообразное напряжение, при этом в функциональном блоке (ФБ) 5, через который то же напряжение поступает на РУ 6 ЭДПЭ, формируется обратная по отношению к (3.1)

зависимость

Рис. 3.1.

Схема управления синхронным поворотом

дифракционной решетки и внутрирезонаторного эталона

За базовую модель был взят широко используемый в установках по лазерной ступенчатой резонансной фотоионизации атомов серийный импульсный лазер на красителях ЛЖИ-504 с накачкой импульсно-периодическим лазером на парах меди «Криостат-1», в котором перестраиваемый вручную синусный механизм поворота дифракционной решетки был заменен ЭДП. Аналогичный привод управлял поворотом внутрирезонаторного плоского эталона Фабри-Перо, для чего сердечники дифференциального индуктивного датчика положения и линейного микродвигателя магнитоэлектрического типа жестко крепились к приводному рычагу кольца, в котором закреплялся серийный кварцевый интерферометр ИФП-2 с воздушным зазором 2 мм или внутренний эталон из комплекта ЛЖИ-504. Лазер обеспечивал ширину линии излучения 0,04 см-1.

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.