Закон дисперсии. Вектор объемной плотности поляризации.

Рассмотрим простые физические модели диспергирующих сред. Ясно, что простые модели, отражающие реальные свойства среды, могут быть построены в немногих случаях. Тем не менее они очень важны для понимания физики и заслуживают подробного обсуждения.

Для нахождения зависимости от частоты (закона дисперсии) необходимо решить задачу о взаимодействии электромагнитной волны с имеющимися в среде зарядами.

Все современные теории дисперсии учитывают молекулярное строение вещества и рассматривают молекулы как динамические системы, обладающие собственными частотами. Молекулярные системы подчиняются законам квантовой механики. Однако результаты классической теории дисперсии во многих случаях приводят к качественно правильному выражению для показателей преломления и поглощения как функций частоты.

Диэлектрики условно разделяются на два типа — неполярные и полярные. В молекулах неполярных диэлектриков заряды электронов точно компенсируют заряды ядер, причем центры отрицательных и положительных зарядов совпадают. В этом случае в отсутствие электромагнитного поля молекулы не обладают дипольным моментом. Под действием поля волны происходит смещение электронов (ионы при этом можно считать неподвижными, поскольку их масса велика по сравнению с массой электронов) а каждая молекула поляризуется — приобретает дипольный момент . Если диэлектрик однороден и в единице объема содержится одинаковых молекул, то вектор объемной плотности поляризации .

Для определения вектора необходимо решить уравнение движения электронов в молекуле под действием поля волны и найти смещение электронов как функцию поля. В классической теории дисперсии описание движения электронов в молекуле основано на модели Друде — Лоренца, согласно которой молекула представляется в виде одного или нескольких линейных гармонических осцилляторов, соответствующих нормальным колебаниям электронов в молекуле. Рассмотрим уравнение движения такого осциллятора:

. (2.1)

Здесь — эффективная масса, — константа затухания, имеющая размерность частоты, — резонансная угловая частота нормального колебания, — поле, действующее на диполь. Для плотных сред действующее поле в однородном диэлектрике отличается от среднего макроскопического поля в среде на величину и равно

.

Отметим, что последнее равенство справедливо для изотропной среды и для кристаллов кубической симметрии.

При гармонической зависимости от времени поля из уравнения (2.1) получим следующее соотношение:

.

Отсюда удобно выразить :

. (2.2)

Учитывая, что , из (2.2) найдем

, (2.3)

.

Разделяя в (2.3) действительную и мнимую части, получим

.

Здесь введены обозначения , . В случае низких частот, удовлетворяющих условию , придем к выражению для статической диэлектрической проницаемости

.

Для твердых и жидких диэлектриков может значительно превышать единицу.

В газах плотность поляризованных молекул обычно невелика. При этом и можно считать, что мало отличается от единицы. Поэтому

. (2.4)

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.

Лучшая статья

Единая квантовая теория

Матричное моделирование элементарных частиц представляет собой единую квантовую теорию, которая объединяет все виды частиц и физические взаимодействия (электромагнитное, гравитационное) в общую схему с конечным построением. Матричное моделирование альтернативно модели Гелл-Манна и всех смежных ей теорий, но имеет ряд существенных преимуществ (перечислены ниже).