Невидимые излучения.

Большие надежды возлагались и возлагаются на диапазон рентгеновских лучей (некогда таинственных X- лучей). Напомним, что рентгеновское излучение, создаваемое в рентгеновских трубках путем разгона электронов электрическим полем и их последующего тормо­жения на положительно заряженном электроде (антикатоде), так же как и видимый свет, является электромагнитным излучением. Оно ха­рактеризуется длинами волн на четыре-пять порядков меньшими, чем у видимого света. Например, в медицинской диагностике применяется рентгеновское излучение с l»0,17 ¾ 0,10A°, а при просвечивании мате­риалов (толстые стальные и другие изделия) ¾ с l » 0,05 A°. Отсюда видно, что использование рентгеновского излучения в обычном опти­ческом микроскопе вместо видимого могло бы дать соответствующее, легко оцениваемое теоретически повышение разрешающей способно­сти прибора.

Воспользуемся формулой для определения предела разрешаю­щей способности прибора d»(0,61*l)/(n*sinj). Для рентгенов­ских лучей коэффициент преломления n среды очень близок к единице. Поэтому, если воспользоваться рентгеновским излучением с l » 0,1A° (это со­ответствует ускоряющему напряжению около 120 кв.), то дифракцион­ный предел составит приблизительно 0,05A°. Однако на пути реализации такой заманчивой возможности существуют принципиаль­ные трудности, связанные с особенностями рентгеновского излучения и его взаимодействия с веществом. Первая и наиболее существенная трудность заключается в том, что рентгеновские лучи практически не­возможно фокусировать, получать их зеркальное отражение, а также другие явления, лежащие в основе процесса формирования изображе­ний в оптической микроскопии. Для создания линз, призм и других по­добных оптических элементов в этом случае нужны материалы с коэффициентом преломления, большим единицы. Из-за особенностей взаимодействия рентгеновских лучей с веществом (мы здесь не будем касаться подробностей этого вопроса) коэффициент преломления их практически во всех материалах близок к единице, а точнее - не­сколько меньше единицы. Даже лучшие полированные поверхности не могут обеспечить зеркального отражения рентгеновских лучей (длины волн рентгеновского излучения практически всегда меньше средних размеров неоднородностей поверхности). Это обстоятельство препят­ствует созданию зеркального рентгеновского микроскопа.

Несмотря на перечисленные затруднения, в СССР и за границей были успешно проведены эксперименты в области рентгеновской мик­роскопии, используя некоторые специальные приемы. Правда, резуль­таты этих работ пока не получили технической реализации. Кроме того, они в настоящее время не дают возможности надеяться на какое-либо продвижение в сторону дифракционного предела, соответствующего диапазону рентгеновского излучения. Вместе с тем проблема рентге­новской микроскопии является в настоящее время настолько актуаль­ной, что в технике получили развитие некоторые «обходные» приемы, основывающиеся на сочетании методов рентгеновской проекции с ра­диотехническими (в том числе телевизионными) устройствами, позво­ляющими получить дополнительное увеличение (10¸30*) и приемлемое разрешение (порядка нескольких десятков микрон). И хотя это чрезвы­чайно далеко от потенциальных возможностей рентгеновской микро­скопии, подобные устройства находят применение в науке и технике.

Перейти на страницу: 1 2 

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.