Функция Ψ. Нормировка вероятности.

Если – волновые функ­ции, описывающие какие-то два состояния частицы, то всякая их линейная комбинация с постоянными коэффициентами с1Ψ1 + с2Ψ2 представляет также волновую функцию той же ча­стицы, описывающую какое-то ее состояние. Найдя Ψ указан­ным путем, можно в дальнейшем определить и плотность ве­роятности Ψ*Ψ в состоянии Ψ.

Оправданием такого принципа суперпозиции является согла­сие с опытом вытекающих из него следствий. Является ли прин­цип суперпозиции точным законом природы, или он верен толь­ко в линейном приближении, этот вопрос не может считаться выясненным.

Подчеркнем особо, что физический смысл волновой функции Ψ связан не только с ее модулем, но и с ее фазой, определяемой мнимой частью этой функции. Если бы речь шла о волновой функции только одного состояния, то можно было бы ограничиться од­ним только модулем. Но если речь идет о наложении состояний, то происходит их интерференция, а она определяется относи­тельной разностью фаз волновых функций, описывающих эти состояния.

Частота волны де Бройля ω и вообще частота волновой функции относятся к принципиально ненаблюдаемым величи­нам. Этим можно воспользоваться, чтобы перейти к квантовой механике в нерелятивистской форме. И в классической меха­нике обширная область явлений охватывается в нерелятивист­ском приближении. То же может быть сделано и в квантовой механике. К тому же здесь переход к релятивистскому рас­смотрению осложняется следующим обстоятельством. В сильных полях, когда энергия поля (например, γ-кванта) превосходит 2mес2, начинается рождение пар электрон-позитрон. То же наблюдается в аналогичных случаях и для других частиц. По этой причине последовательная релятивистская квантовая меха­ника не может быть теорией одного тела (одной частицы). Теория одного тела возможна только в нерелятивистском прибли­жении. Поэтому в дальнейшем мы ограничимся только нереля­тивистской квантовой механикой.

В нерелятивистской квантовой механике мы будем по-преж­нему пользоваться соотношениями:

E=ħω, (3)

(Здесь и далее: Е – энергия объекта (кинетическая), -импульс, - волновой вектор, ħ – постоянная Планка, делённая на 2π, ħ = 1,05459∙10-34 Дж∙с, ω – частота (волн де Бройля)).

Однако собственную энергию частицы m0c2 учитывать не будем. Это значит, что, начиная с этого места, мы вводим новую ча­стоту, отличающуюся от прежней частоты на постоянную. Для новой частоты сохраним прежнее обозначение ω. В частности, в случае свободного движения

E = р2/2m, и закон дисперсии записывается в виде

ω=(ħ/2m)∙k2 (4)

Это приводит к выражению для фазовой скорости волн де Бройля:

υф = ω/k = ħk/2m = υ/2 (5) (здесь k=2π/λ, - волновое число)

Однако это не может отразиться на физических выводах тео­рии, так как фазовая скорость, как и сама частота ω волны де Бройля, относится к числу принципиально ненаблюдаемых величин. Существенно, что физически наблюдаемые величины - плотность вероятности Ψ*Ψ и групповая скорость (групповая скорость волн де Бройля равна скорости частицы) - при новом выборе частоты остаются неизменными. Остаются неизменными и все величины, доступные измерению на опыте.

Перейти на страницу: 1 2 

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.