Методика изучения темы “волновые свойства света”. Интерференция света.

Объясняется, в каких местах интерференционной картины будут максимумы и минимумы света (рис.9.). Записывается разность хода двух лучей и условия усиления и ослабления света. При

образуется светлая полоса. При

темная полоса; здесь n=0, 1, 2, 3…

Если разность хода равна , то волны приходят в одинаковых фазах, если же , то в противоположных фазах. Наконец следует подчеркнуть, что областью интерференции будет всё пространство, в котором волны накладываются друг на друга. Поэтому экран можно поставить в любое место этой области, пересекая продольную ось всей установки.

Остается показать, как определяется длина световой волны. На одной и той же установке, т.е. при неизменных расстояниях от экрана до источника света и между мнимыми его изображениями, величина промежутка b между соседними темными (или светлыми) полосами интерференции зависит лишь от цвета лучей, т.е. от длины волны l. Значит, l b.

Таким образом, второй важный вывод из опытов по интерференции должен состоять в том, что это явление позволяет измерить длину световой волны.

Из-за недостатка учебного времени можно не выводить формулу для вычисления длины волны. Важно разъяснить лишь метод измерения l. Напоминается порядок расположения цветов в призматическом спектре и указывается, что длина волны убывает в нем от красного участка к фиолетовому.

Пользуясь этими сведениями, можно дать понятие об однородном свете как о свете с одной частотой колебаний и неизменной амплитудой.

Следует указать, что по длине волны или частоте можно определить цветность светового пучка, но по цвету пучка нельзя судить о длине волны. Кроме того, по цвету трудно отличить в спектре два его участка, длины волн которых разнятся между собой на несколько миллимикрон. Даже самая узкая область спектра состоит из излучения различных частот.

Затем можно поставить опыт по интерференции с бипризмой Френеля в белом свете. Обращается внимание на характер интерференционной картины: центральная полоса всегда белая; по обе стороны от неё – темные полосы; затем цветные полосы максимумов света, разделенные темными промежутками; последовательность расположения цветных полос – от фиолетового к красному, причем первая ближе к центральной белой полосе.

Объясняется, почему центральная светлая полоса белая, а другие максимумы цветные. В центр экрана (см.рис.11) от точек S1 и S2 колебания приходят в одинаковой фазе. Поэтому все колебания равных частот усиливают друг друга, а от смешения всех спектральных цветов получается белая полоса.

В точку А приходят колебания с разностью хода S2A-S1A=S2N, которая для фиолетового света может оказаться равной четному числу полуволн, а для других длин волн – нет. В другой точке экрана это условие может удовлетворяться для красного света. Поэтому в А наблюдается фиолетовая полоса, а в другом месте – красная.

Перейти на страницу: 1 2 3 4

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.