Анализ и решение проблемы переноса энергии волнами электромагнитного поля

Для проводящей среды в асимптотике металлов (), как показал анализ [7], распространение волн всех четырех электродинамических составляющих реального электромагнитного поля подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [1], где все волновые решения имеют вид экспоненциально затухающих в пространстве плоских волн со сдвигом фазы между компонентами на .

Однако вернемся к анализу энергетики распространения составляющих реального электромагнитного поля в виде плоских волн в диэлектрической среде без потерь (). Вначале обратимся к закону сохранения электрической энергии, соотношение которого согласно (10) запишется как:

.

(12)

Выясним, выполняется ли это выражение для плоской монохроматической электрической волны, полевые компоненты которой, согласно волновым решениям уравнений системы (7), обладая сдвигом фазы на , имеют следующий вид: и . Тогда, подставляя их в соотношение (12), приходим к соотношению:

.

Такой результат вполне удовлетворяет закону сохранения энергии, поскольку усреднение по времени этого соотношения дает

, (13)

а потому электрическая волна действительно переносит в пространстве чисто электрическую энергию: , не зависящую от времени и точек пространства.

Соответственно, для магнитного поля, распространяющегося в однородной среде без потерь, закон сохранения магнитной энергии согласно (11) запишется в виде соотношения:

.

(14)

Рассмотрим, как выполняется этот закон для плоской монохроматической магнитной волны, полевые компоненты которой, согласно волновым решениям уравнений (8), имеют следующий вид: и . Подставляя их в соотношение (14) и проводя аналогичные рассуждения как при выводе формулы (13), получаем в итоге:

. (15)

Итак, в случае магнитного поля снова приходим к физически здравому результату, когда в пространстве без потерь посредством магнитной волны переносится чисто магнитная энергия , не зависящая от времени и точек пространства. Следовательно, распространение магнитной волны также удовлетворяет закону сохранения энергии.

Таким образом, аргументированно установлено, что в Природе объективно существует сравнительно сложное и необычное с точки зрения традиционных представлений вихревое четырехвекторное поле в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент , и ,

. Это поле, условно названное реальным электромагнитным полем

, реализуется четверкой составляющих его электродинамических полей, состоящих из пар вышеуказанных компонент: электрическое поле с и , магнитное поле с и , электромагнитное поле с и , наконец, поле векторного потенциала с и . Причем способностью к непосредственному распространению в пространстве в виде волн, отвечающих обычным физическим представлениям о волновом процессе, обладают только электрическое и магнитное поля за счет наличия у этих волн сдвига фазы на между их компонентами и , соответственно, и . Реализация же собственно волн ЭМ поля и ЭМ векторного потенциала невозможна в принципе, хотя сами эти поля, как показано выше, существуют и распространяются опосредованно в виде псевдоволн, поскольку их синфазные компоненты являются составной частью компонент электрической и магнитной волн, распространяющихся обычным образом. Именно тем самым все составляющие реального электромагнитного поля

Перейти на страницу: 2 3 4 5 6 7 8

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.