Атомная энергия.

При исследовании распада атомных ядер оказалось, что каждое ядро весит меньше, чем сумма масс его протонов и нейтронов. Это объясняется тем, что при объединении протонов и нейтронов в ядро выделяется много энергии. Убыль массы ядер на 1 г эквивалентна такому количеству тепловой энергии, какое получилось бы при сжигании 300 вагонов каменного угля. Не уди­вительно поэтому, что исследователи приложили все силы, стремясь найти ключ, который позволил бы «открыть» атомное ядро и высвободить скрытую в нем огромную энергию.

Вначале эта задача казалась неразрешимой. В ка­честве инструмента ученые не случайно выбрали ней­трон. Эта частица электрически нейтральна, и на нее не действуют электрические силы отталкивания. По­этому нейтрон легко может проникнуть в атомное ядро. Нейтронами бомбардировали ядра атомов отдельных эле­ментов. Когда же очередь до­шла до урана, обнаружилось, что этот тяжелый элемент ве­дет себя иначе, чем другие. Кстати, следует напомнить, что встречающийся в природе уран содержит три изотопа: уран-238 (238U), уран-235 (235U) и уран-234 (234U), при­чем цифра означает массовое число.

Атомное ядро урана-235 оказалось значительно менее устойчивым, чем ядра других элементов и изотопов. Под действием одного нейтрона наступает деление (расщеп­ление) урана, его ядро распадается па два приблизи­тельно одинаковых осколка, например на ядра крипто­на и бария. Эти осколки с огромными скоростями раз­летаются в разных направлениях.

Но главное в этом процессе, что при распаде одного ядра урана возникают два-три новых свободных ней­трона. Причина заключается в том, что тяжелое ядро урана содержит больше нейтронов, чем их требуется для образования двух меньших атомных ядер. «Строи­тельного материала» слишком много, и атомное ядро должно от него избавиться.

Каждый из новых нейтронов может сделать то же, что сделал первый, когда расщепил одно ядро. В самом деле, выгодная калькуляция: вместо одного нейтрона получаем два-три с такой же способностью расщепить следующие два-три ядра урана-235. И так продолжает­ся дальше: происходит цепная реакция, и, если ею не управлять, она приобретает лавинный характер и за­канчивается мощнейшим взрывом – взрывом атомной бомбы. Научившись регулировать этот процесс, люди получили возможность практически непрерывно получать энергию из атомных ядер урана. Управление этим процессом осуществляют в ядерных реакторах.

Ядерный реактор – устройство, в котором протекает управляемая цепная реакция. При этом распад атом­ных ядер служит регулируемым источником и тепла, и нейтронов.

Первый проект ядерного реактора разработал в 1939 г. французский ученый Фредерик Жолио-Кюри. Но вскоре Францию оккупировали фашисты, и проект не был реализован.

Цепная реакция деления урана впервые была осу­ществлена в 1942 г. в США, в реакторе, который груп­па исследователей во главе с итальянским ученым Энрико Ферми построила в помещении стадиона Чи­кагского университета. Этот реактор имел размеры 6х6х6,7 м и мощность 20 кВт; он работал без внеш­него охлаждения.

Первый ядерный реактор в СССР (и в Европе) был построен под руководством акад. И. В. Курчатова и запущен в 1946 г.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях.

В принципе энергетический ядерный реактор устроен довольно просто – в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Атомные реакторы на тепловых нейтронах различаются между собой главным образом по двум признакам: какие вещества используются в качестве замедлителя нейтронов и какие в качестве теплоносителя, с помощью которого производится отвод тепла из активной зоны реактора. Наибольшее распространение в настоящее время имеют водо-водяные реакторы, в которых обычная вода служит и замедлителем нейтронов, и теплоносителем, уран-графитовые реакторы (замедлитель – графит, теплоноситель – обычная вода), газографитовые реакторы (замедлитель – графит, теплоноситель – газ, часто углекислота), тяжеловодные реакторы (замедлитель – тяжелая вода, теплоноситель – либо тяжелая, либо обычная вода).

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.