Общие критерии термодинамической устойчивости

Допустим, что адиабатически изолированная система находится в термодинамическом равновесии, причем ее энтропия S в рассматри­ваемом состоянии максимальна, т. е. больше энтропий всех возможных бесконечно близких состояний, в которые система может перей­ти без подвода или отвода тепла. Тогда можно утверждать, что самопроизвольный адиабатический переход системы во все эти со­стояния невозможен, т. е. система находится в устойчивом термодинамическом равновесии. Действительно, если бы такой переход был возможен, то энтропии начального 1 и конечного 2 состояний были бы связаны соотношением . Но это соотношение находится в противоречии с принципом возрастания энтропии, согласно которому при адиабатических переходах должно быть . Таким образом, мы приходим к следующему критерию термодина­мической устойчивости.

Если система адиабатически изолирована и ее энтропия в не­котором равновесном состоянии максимальна, то это состояние являемся термодинамически устойчивым. Это значит, что система, оставаясь адиабатически изолированной, не может самопроизвольно перейти ни в какое другое состояние.

В приложениях термодинамики к конкретным вопросам часто бывает удобно вместо адиабатической изоляции системы накладывать на ее поведение другие ограничения. Тогда критерии термодинамической устойчивости изменятся. Особенно удобны следующие критерии.

Критерий устойчивости для системы с постоянными объемом и энтропией.

Принимая во внимание соотношение (4) и первое начало термодинамики, можно написать:

(41)

При постоянстве энтропии и объема это дает

(42)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением внутренней энергии. Следовательно, устойчивым является состояние при минимуме внутренней энергии.

Критерий устойчивости для системы с постоянными давлением и энтропией.

В этом случае условие (41) имеет вид

(43)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением энтальпии Следовательно, устойчивым является состояние при минимуме энтальпии.

Критерий устойчивости для системы с постоянными объемом и температурой.

При и неравенство (41) записывается в виде

(44)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением свободной энергии Следовательно, устойчивым является лишь состояние при минимуме свободной энергии.

Критерий устойчивости для системы с постоянными температурой и давлением.

С помощью выражения (17) для термодинамического потенциала неравенство (41) преобразуется к виду

(45)

При постоянных температуре и давлении дифференциалы и (45) сводятся к неравенству

(46)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением термодинамического потенциала. Следовательно, устойчивым является состояние при минимуме термодинамического потенциала Гиббса.

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.

Лучшая статья

Единая квантовая теория

Матричное моделирование элементарных частиц представляет собой единую квантовую теорию, которая объединяет все виды частиц и физические взаимодействия (электромагнитное, гравитационное) в общую схему с конечным построением. Матричное моделирование альтернативно модели Гелл-Манна и всех смежных ей теорий, но имеет ряд существенных преимуществ (перечислены ниже).