Мазеры

Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики ( ныне академики) Н.Г. Басов и А.М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его “молекулярным генератором” (предполагалось использовать пучок молекул аммиака). Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом. В 1954 г. молекулярный генератор, названный вскоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара — в Физическом институте имени П.Н. Лебедева Академии наук СССР (группой под руководством Н.Г. Басова и А.М. Прохорова) и в Колумбийском университете в США ( группой под руководством Ч. Таунса). В последствии от термина “мазер” и произошел термин “лазер” в результате замены буквы “М” (начальная буква слова

Microwave – микроволновой) буквой “L” (начальная буква слова Light – свет).

В основе работы как мазера, так и лазера лежит один и тот же принцип –

принцип, сформулированный в 1951 г. В.А. Фабрикантом. Появление мазера

означало, что родилось новое направление в науке и технике. Вначале его

назвали квантовой радиофизикой, а позднее стали называть квантовой электроникой.

Принцип работы мазеров имеет много общего с работой лазеров. Главный процесс - вынужденное излучение возбужденных молекул - протекает в отличие от лазерного не в оптическом диапазоне, а в диапазоне СВЧ. Схематически мазер показан на рис. 1. Пучок молекул аммиака из источника 1 влетает в селектор 2, в котором происходит разделение молекул.

Рис. 1 - Принцип устройства мазера.

В качестве селектора большей частью применяют так называемый квадрупольный конденсатор, который состоит из четырех параллельных металлических стержней с разноименным зарядом, создаваемым напряжением 20-30 кВ (рис. 2). Внутри возникает неоднородное электрическое поле, причем на продольной (вдоль стержней) оси симметрии конденсатора поле отсутствует. В молекулярном пучке, поступающем в конденсатор, часть молекул находится в возбужденном состоянии, а другая часть в невозбужденном. Возбужденные молекулы имеют электроны на более высоких энергетических уровнях.

Рис. 2 - Взаимное расположение стержней в квадрупольном конденсаторе.

Электрическое поле квадрупольного конденсатора действует на молекулы так, что возбужденные молекулы собираются на оси конденсатора, а невозбужденные отклоняются от оси. В результате из квадрупольного конденсатора в объемный резонатор 3 попадает пучок возбужденных молекул. Объемный резонатор представляет собой колебательную систему в виде некоторой плоскости, ограниченной проводящими стенками. Такой резонатор в зависимости от размеров обладает обычно несколькими резонансными частотами. В квантовом генераторе резонатор настроен на частоту, соответствующую переходу возбужденных молекул в основное, невозбужденное состояние. Тогда поток молекул, в которых осуществляется такой переход, излучает электромагнитные волны, возбуждающие и поддерживающие колебания в резонаторе. Энергия этих колебаний отбирается через вывод 4 резонатора.

Перейти на страницу: 1 2 3 4 5 6

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.