Внешний фотоэффект

Вот, пусть мы имеем металл. Металл это, кстати, что такое? Это твёрдое тело, внутри которого имеются свободные электроны, которые могут свободно двигаться внутри этого тела. Именно металлы это те тела, в которых есть свободные электроны; не то, что в металлах это есть, а металлы – это такие вещества. Характерные свойства металлов (блеск) это свойство того, что в нём свободные электроны. Если на металл падает свет, то из металла вылетают электроны, это экспериментальный факт, был в своё время такой опыт, и явление называется фотоэффектом. Ну, прежде всего, чтобы начать обсуждать, почему они вылетают, давайте поймём, почему они не вылетают, если они там есть. Тоже, кстати, вопрос не праздный.

Что такое металл? Металлы – это такие вещества, у которых при соединении атомов в решётку отскакивают валентные электроны, остаются ионы, которые стоят в узлах решётки, и, значит, мы имеем такую структуру: ионы с положительными зарядами, а между ними электроны, и эти электроны свободно сквозят через эту решётку. Почему электрон не вылетает, никаких стенок нет? Ответ простой: как только электрон вылетел, весь кусок (до этого был нейтральным) становится положительно заряженным, и он затягивает его обратно. Вроде бы мы ответили на вопрос, но не так-то просто!

В жидкости молекулы нейтральны, между ними силы взаимодействия. Когда молекула жидкости вылетает (внутри жидкости на молекулу действуют силы во все стороны и в среднем они уравновешены), появляются силы, которые её затягивают обратно. Поэтому мы имеем поверхность жидкости, отделяющую воду в стакане от окружающего воздуха. Но молекулы в жидкости имеют разные скорости, и мы видели в своё время распределение молекул по скоростям (или распределение по энергиям в газе). Функция распределения имеет «хвост», и, в принципе, здесь сейчас в воздухе можно найти молекулу с любой энергией; молекулы в жидкости так же имеют функцию распределения с «хвостом», и там, в принципе, можно найти молекулу с достаточной энергией. С энергией достаточной для чего? А для того, чтобы она смогла совершить работу против сил притяжения, а эта работа заведомо конечна, и улететь. Значит, в жидкостях имеются за счёт хаотического теплового движения молекулы с энергиями большими, чем работа по преодолению сил притяжения, возникающих, когда она взлетает. Молекула, обладающая такой энергией, совершает эту работу, вылетает, при этом её кинетическая энергия убывает на какую-то величину, но всё равно она улетает. Происходит испарение жидкости, и это испарение обуславливает то, что жидкая фаза неустойчива принципиально. Ну, понятно почему. Допустим, быстрые молекулы улетели вот из этого хвоста распределения, но хвост отрастает всё время, если температура остаётся та же самая, хвост отрастает, и поэтому, в конце концов, они испарятся все.

Если теперь вернуться к вопросу о том, почему не вылетают электроны из металла, возникает такая проблема: если электроны в металле как частицы идеального газа, то среди них должны быть энергичные электроны, которые всё равно вылетят, эту работу совершат и улетят. Должно происходить непрерывное испарение электронов из металла. В чём бы это проявилось? Это проявилось бы в том, что кусок металла имел бы положительный заряд, а это тоже проявилось бы на бытовом уровне, и можете легко сообразить в чём. На любой кусок металла налипала бы всякая мелочь, пыль, бумажки, он был бы облеплен всякой гадостью, любой кусок металла должен был бы быть облеплен пылью больше, чем соседний кусок дерева. Этого не наблюдается. Это означает, что электроны не испаряются. А это означает, что функция распределения по энергиям внутри металлов такая, как на рис.1.4. Был бы «хвост» у этой функции распределения, – электроны бы испарялись, и кусок был бы облеплен. Вот, между прочим, первое обстоятельство, которое говорит, что здесь что-то не то с нашими представлениями. Действительно, функция распределения по энергии электронов в металле имеет вид не такой, как на рис.1.3, а такой. Имеется некоторая энергия , и электроны имеют энергию в интервале . Если взять интервал энергии , то закрашенная площадь даст число электронов с энергией в этом интервале, а электронов, энергия которых больше , там нет вообще.

Тот факт, что металл не облеплен пылью, говорит, что нет хвоста, то, что обрыв такой резкий, из этого сказать нельзя, но где-то эта функция должна оборваться.

Перейти на страницу: 1 2 3 4

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.

Лучшая статья

Единая квантовая теория

Матричное моделирование элементарных частиц представляет собой единую квантовую теорию, которая объединяет все виды частиц и физические взаимодействия (электромагнитное, гравитационное) в общую схему с конечным построением. Матричное моделирование альтернативно модели Гелл-Манна и всех смежных ей теорий, но имеет ряд существенных преимуществ (перечислены ниже).