Потенциальная энергия ограниченного распределения заряда во внешнем поле.

Пусть имеется распределение заряда, разобьём заряд на малые элементы объёма dV, в этом элементе объёма заряд . - это потенциальная энергия заряда в элементе объёма dV, энергия элементарного заряда. Тогда вся потенциальная энергия этого распределения будет равна .

Это точная формула. Теперь мы займёмся получением приближённой формулы.

Выберем некоторую точку внутри распределения, радиус-вектор этой точки будет , радиус-вектор – это вектор, идущий из выбранной точки в этот элемент объёма, . Тогда потенциал в точке – это . Пока написано разложение с точностью до первых производных, дальше там пойдут слагаемые со вторыми производными и так далее, это факт математический.

В основе этого вычисления лежит следующее предположение: будем считать, что потенциал мало меняется в пределах распределения, то есть распределение не слишком велико. Это означает, что второе слагаемое много меньше первого, то есть значение потенциала в некоторой точке внутри такое-то, а добавка к потенциалу, когда мы доходим до края распределения, мала, поэтому далее слагаемые мы выкидываем вообще. Подставим теперь это дело в формулу для потенциальной энергии: .

Мы добыли вот такую симпатичную формулу: , где – радиус-вектор, идущий в некоторую точку внутри распределения, это опять разложение по мультиполям.

Что это физически означает? Главный вклад в потенциальную энергию – полный заряд на значение потенциала где-то внутри распределения, поправочное слагаемое, учитывающее дипольный момент распределения (дипольный момент характеризует как там размещены друг относительно друга отрицательные и положительные заряды), и др. характеристики, учитывающие моменты более высоких порядков.

Чтобы дальше эта буква не вводила в заблуждение, перепишем результат так: .

А теперь мы можем найти силу (сила – это градиент потенциальной энергии), пишем: . И окончательно получим такой результат:

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.