Парадокс Больцмана

Создается впечатление, что квантовая физика описывает процессы “приблизительно”, не давая точных и однозначных ответов на некоторые вопросы. В.Вайскопф относит себя к старым противникам такого утверждения. Он считает, что как раз квантовая физика привнесла в науку о природе большую точностью

Главное, что квантовая физика сняла много вопросов, остававшихся без ответа в рамках классических представлений. Одна из решенных квантовой физикой задач - это разрешение парадокса Больцмана, о котором вспоминают не слишком часто:

“ . согласно классической механике, мы предполагаем, что в системе атомов, находящейся в тепловом равновесии при данной температуре, тепловая энергия должна быть равномерно распределена среди всехвозможных видов движения. В куске нагретого вещества электроны должны вращаться быстрее, протоны внутри ядер должны колебаться более энергично, составные части протонов должны колебаться более энергично в пределах своих границ и т.д. Таким образом, удельная теплоемкость любого простого куска вещества должна быть чрезвычайно велика. В действительности же удельная теплоемкость имеет именно такое значение, которое можно получить, рассматривая только внешнее движение атомов. Было непонятно, почему тепловая энергия не проникает внутрь атома и не возбуждает его внутренние степени свободы. Парадокс Больцмана был сформулирован в 1892 г., задолго до создания квантовой механики. Но объяснения ему не было.”

Особенно остро сформулированная в парадоксе Больцмана проблема проявилась при анализе равновесного теплового излучения, когда создалась ситуация, получившая название “ультрафиолетовой катастрофы”. Квантование энергии стоячих волн снимает проблему и приводит к результатам, великолепно совпадающим с результатами эксперимента.

В этом главное: появившиеся в поле зрения физиков новые объекты - кванты, при всем их разнообразии, обладают одним общим свойством, не характерным для классических макрообъектов: они не могут быть разделены на части, за поведением которых нам хотелось бы проследить. И это фундаментальное их свойство:

“Одной из главных особенностей классической физики является возможность делить каждый процесс на составные части. Любой физический процесс можно считать состоящим из последовательности составляющих его процессов. По крайней мере теоретически каждый процесс можно проследить шаг за шагом во времени и в пространстве. Орбиту электрона вокруг ядра можно представить в виде последовательности малых перемещений. Электрон можно считать состоящим из частей с меньшими зарядами. Но эту точку зрения следует отбросить, если мы хотим понять, что видим в природе .”

И к этому утверждению “примыкает” такое:

“Здесь мы сталкиваемся с весьма важным фактом, заключающимся в том, что указанная невозможность выполнения некоторых измерений означает больше, чем простое техническое ограничение, которое в один прекрасный день может быть преодолено с помощью хитроумного оборудования.”

Коротко это звучит так. Квантовые объекты - это по своей природе неделимые объекты. Его состояние можно изменить, но выделить какую-то его часть нельзя.

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.