Спектры электромагнитного излучения атома.

Принцип соответствия Бора: Законы квантовой механики при больших значениях квантовых чисел переходят в законы классической механики.

Вывод из этого принципа: всякая новая теория является развитием предыдущих теорий и полностью её не отвергает, а лишь указывает границы её применимости.

l – орбитальное (побочное или азимутальное) квантовое число. Характеризует (показывает) форму электронного облака и изменяется от 0 до (n-1), то есть, зависит от главного квантового числа. l определяет значение момента количества движения электрона по орбите.

l характеризует число подуровней на заданном энергетическом уровне.

Каждому значению l соответствует орбиталь особой формы.

Орбитали с l = 0 называются s-орбиталями,

l =1 - р-орбиталями (3 типа, отличающихся магнитным квантовым числом m),

l = 2 - d-орбиталями (5 типов),

l = 3 - f-орбиталями (7 типов).

m – магнитное квантовое число. Показывает ориентацию электронного облака в атоме при взаимодействии магнитного поля электрона с внешним магнитным полем и магнитными полями соседних электронов. m определяет число орбиталей на данном подуровне l (от –l до +l).

n=1

l=0(s)

m=1

n=2

l=0(s), 1(p)

m=1,3

m=-1,0,1

n=3

l=0(s),1(p),2(d)

m=1,3,5

Три квантовых числа n, l и m определяют волновые свойства электрона (следует из решения уравнения Шредингера).

s – квантовое число, называемое спин.

Частица с целым спином.

Принцип Паули: В атоме не может быть электронов, у которых все квантовые числа равны. Это связано с тождественностью частиц. В атоме не может быть двух электронов в одинаковых энергетических состояниях.

Принцип дополнительности Бора (сформулирован в 1927-м году): Получение экспериментальной информации об одних физических величинах, описывающих частицу, неизбежно связано с потерей информации о других величинах, дополнительных к первой.

Eкин ® Епот

v®(x,y,z)

С точки зрения физика-экспериментатора это связано с влиянием макроприбора на микроскопический объект. С точки зрения квантовой механики определить одновременно основные свойства частицы и дополнительные к ним невозможно точно ни на каком приборе, так как частицы обладают корпускулярно-волновым дуализмом.

Принцип неопределенности Гейзенберга: увеличение точности определения положения частицы вызывает увеличение ошибки определения ее момента (энергии), если эти определения проводятся одновременно.

Принцип причинности (Связан с Лапласовским детерминизмом): Если мы знаем исходное условие (причину), то всегда можем определить следствие.

Квантовая механика основывается на теории вероятностей.

Ψ0®|Ψ|2 – Квадрат функции показывает наибольшую вероятность местоположения данной частицы.

Перейти на страницу: 1 2 

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.