Заключение

В настоящее время наряду с исследованиями по нелинейной оптике продолжаются работы и над созданием лазеров совершенно новых типов. Одно из важных направлений исследования — получение когерентной генерации длинноволнового рентгеновского излучения (l=10-9¸10-10 м).

Существуют два основных препятствия на пути создания рентгеновских лазеров: практически отсутствуют отражатели, пригодные для резонаторов в области длинноволнового рентгеновского излучения, и, кроме того, растут трудности, связанные с осуществлением накачки, и с уменьшением длины волны. Так как любое твердое тело поглощает рентгеновское излучение, невозможно для создания обратной связи применить обычные лазерные резонаторы. Мало надежды на то, что удастся создать резонатор с замкнутой траекторией луча, отклоняя излучение с помощью нескольких скользящих отражений от кристаллов. Таким образом, источники когерентного рентгеновского излучения, вероятно, будут усилителями, а не генераторами.

Другая серьезная проблема заключается в трудности накачки таких лазеров. Она возникает вследствие крайне короткого времени жизни рентгеновских переходов (t»10-15 с). Поддержание инверсной населенности требует мощностей накачки порядка ватта на атом. Становятся доступными системы накачки, использующие пикосекундные импульсы на выходе системы. Такая система состоит из задающего генератора и каскадов усиления и может давать импульсную выходную мощность излучения порядка 1012 Вт. Кроме того, следует отметить накачиваемые электронным пучком системы на эксимерах. Если удастся создать рентгеновский лазер, его можно будет использовать для радиографии с малыми длительностями экспозиции просвечивания плотных газов при высоких температурах и получения голограмм микрообъектов.

Выдвинуты предложения и проведены предварительные исследования возможности создания гразеров (гамма-лазеров) с рабочей длиной волны примерно 0,1 нм. Такие приборы, работая без зеркал, могли бы использовать возбужденные состояния ядер для получения стимулированного излучения.

Какую наиболее короткую длину волны лазера можно получить? Единственное принципиальное ограничение связано с образованием электрон-позитронных пар. Лазер, работающий на пороговой (с точки зрения образования пар) частоте, имел бы длину волны 1,2 *10-12 м. Сравнивая частоту такого лазера с частотой мазера на аммиаке (24 ГГц), видим, что устройства, использующие усиление с помощью вынужденного излучения, могли бы работать в диапазоне, охватывающем десять порядков по частоте.

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.