Механизм возникновения и характеристики излучения

Источником гамма-излучения являются:

- торможение быстрых заряженных частиц в среде (тормозное гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле ядер вещества) или при их движении в сильных магнитных полях (синхротронное излучение);

- процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд;

- переходы ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения обычно лежит в интервале от нескольких кэВ до нескольких МэВ и спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра;

- при распадах частиц и реакциях с их участием обычно испускаются гамма-кванты с большими энергиями - десятки-сотни МэВ.

- при соударении электронов большой энергии от ускорителей с интенсивными пучками видимого света, создаваемых лазерами. При этом электрон передает свою энергию световому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве в результате соударений фотонов с большой длиной волны с быстрыми электронами, ускоренными электромагнитными полями космических объектов.

Энергия γ–кванта равна разности энергий состояний, между которыми происходит переход.

Е2

Е1

Рис.1 Образование гамма-кванта

Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (10-2 эВ). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми со скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий.

Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гамма-квантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом:

· фотоэлектрическое поглощение (фотоэффект);

· комптоновское рассеяние (Комптон-эффект);

· образование пар электрон-позитрон.

При фотоэффекте гамма-квант выбивает из атома один из его электронов, а сам исчезает. При Комптон-эффекте гамма-квант рассеивается на одном из слабо связанных с атомом или свободных электронов вещества. Если энергия гамма-кванта превышает 1,02 МэВ, то возможно его превращение в электрическом поле ядер в пару электрон-позитрон (процесс обратный аннигиляции).

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.